Розв’язність логічної системи В інших параметрах, наприклад, лінійної логіки,
Співвідношення (доказовості) можна використовувати для визначення теорем системи. Логічна система є розв’язною якщо існує ефективний метод визначення того, чи є довільні формули теоремами логічної системи.
Розв’язність — фундаментальне поняття в теорії обчислюваності та математичній логіці, що стосується питання про те, чи можна проблему розв’язати за допомогою кінцевої процедури чи алгоритму.
Було показано, що афінна лінійна логіка (тобто лінійна логіка з ослабленням, розширенням, а не фрагментом) є розв’язною, в 1995 році.
Визначення «розв’язності» 1. здатність приймати рішення. 2. логіка. здатність довести наявність або відсутність певної якості.
Повнота та розв’язуваність — це два пов’язані, але різні поняття. У той час як повнота відноситься до здатності формальної системи доводити або спростовувати всі істинні твердження в цій системі, розбірливість відноситься до здатності визначати, чи є дане твердження істинним чи хибним у системі.
Проблема розв'язності виникає природним чином, коли теорія визначається як набір логічних наслідків фіксованого набору аксіом. Є кілька основних результатів щодо розв'язності теорій.